

Impella for cardiogenic shock

Nijmegen, 10 Februari, 2015

Jose PS Henriques

Academic Medical Center University of Amsterdam The Netherlands

Potential conflicts of interest

Research grant Abbott Vascular Research grant Abiomed Inc. Research grant BBraun Research grant Biotronik Research grant InspireMD (>10.000 euro)
(>10.000 euro)
(>10.000 euro)
(>10.000 euro)
(>10.000 euro)

Global Impella Advisory board member European working group on the use of Impella

Cardiogenic shock - Agenda

- 1. Acute Myocardial infarction setting
- 2. Brief overview various target therapies
- 3. The role for mechanical support

Mortality in CS

Thiele et al. ESC 2012

STEMI + CS - DEATH

<10% of all STEMI but accounts for 90% of mortality

Metabolic pathways

Inotropic and vasopressor agents

The good...

- Improve haemodynamic parameters rapidly in CS.
- The haemodynamic benefits are perceived to outweigh the risks because hypotension itself compromises myocardial perfusion.
- Pharmacological circulatory support is recommended in CS

Metabolic pathways

Inotropic and vasopressor agents

The bad...

- Increase myocardial oxygen consumption
- Can cause myocardial ischaemia
- Can cause ventricular arrhythmias,
- Can cause contraction band necrosis
- Can cause infarct expansion
- Pharmacological circulatory support is recommended in CS....

......Although these drugs have not shown to improve patient outcomes in RCT's.

Revascularization

SHOCK TRIAL @ 30 days

Revascularization

SHOCK TRIAL @ long term

All Patients

Mechanical assist devices

Mechanical Circulatory Support

STEMI + CS

Myocardial recovery

- Myocardial recovery
- Organ recovery

Mechanisms

- acceleration recovery of contractility in stunned myocardium by increasing postischemic myocardial (microvascular) blood flow.
- unloading effect:
 peak left ventricular wall stress↓
 myocardial workload↓
 - \rightarrow reduced myocardial oxygen consumption.

Sjauw KD, Engström AE, Henriques JPS; Percutaneous Mechanical Cardiac Assist In Myocardial Infarction. Where Are we Now, Where Are We Going? Acute Card Care 2007;9(4):222-30

Mechanical assist devices

Currently available devices

Impella 5.0 (surgical insertion)

IABP in STEMI

Sjauw KD, et al. Eur Heart Journal, 2009

IABP in STEMI

Sjauw KD, et al. Eur Heart Journal, 2009

The CRISP AMI Trial

N=337

	IABC Plus PCI (n = 161)	PCI Alone (n = 176)	P Value
	4.0 (3.0-5.0)	4.0 (3.0-4.0)	.20
Infarct size, % of left ventricular mass Per-protocol analysis, No. (%)	133 (82.6)	142 (80.7)	
Mean (95% Cl)	42.1 (38.7-45.6)	37.5 (34.3-40.8)	.06
Median (IQR)	42.8 (27.2-54.7)	36.2 (25.9-49.4)	
Multiple imputation analysis Mean (95% Cl)	42.1 (38.6-45.6)	37.6 (34.3-40.9)	.07
Median (IQR)	42.5 (27.1-55.9)	36.4 (24.9-49.9)	

No Hemodynamic Benefit IABP

Thiele et al. Presented ESC Congress Munchen 2012

IABP-SHOCK 2

Thiele et al. Presented ESC Congress Munchen 2012

IT'S THE CHOICE THAT'S EASY TO LOVE

7

SAFE, EFFECTIVE, EASY TO USE

LEARN MORE >

For years, it's offered minimal complications, superior ease of use, and positive results. No wonder it's the most-used, most-studied, and most-published cardiac assist device. Recent clinical guidelines have reaffirmed your clinical observations: it's the first-line device for acute hemodynamic support.

MAQUET has been a driving force in IABP since its beginnings, and is pleased to lead the way in its future.

Safe, effective, and easy to use —it's the choice that's easy to love.

Thiele Eur Heart J 2005 Burkhoff Am Heart J 2006

7 patients included in 1 year 6 patients died Death rate 86%

Low Flow Management Strategy for Out of Hospital Cardiac Arrest

Lamhaut L et al. Resuscitation 2013 July

Regional Cardiogenic Shock Centers

In hospital survival rate 36.8% Not statistically different from that of 123 consecutive patients who received ECMO at our institution during the same period

Beurtheret S et al. Eur Heart J, 2012

Impella family

Impella family

	Impella 2.5	Impella CP	Impella 5.0/LD	Impella RP
Access	Percutaneous, Femoral	Percutaneous, Femoral	Surgical, Axillary/ Fem or Ascend aorta	Percutaneous, Femoral Vein
Output (max)	2.5 L/min	3,7-4.0 L/ min	5.0 L/ min	4.6 L/ min
Guiding catheter size	9F	9F	9F	11F
Motor Size	12F	14F	21F	22F
Introducer Size	13F Peel away	14F Peel away	Dacron graft 10mm	23F Peel away
RPM (max)	51,000	46,000	33,000	33,000
EU approval	5 days CE Mark	5 days CE Mark	10 days CE Mark	14 days CE Mark

Impella

Impella

Sjauw KD, Acute Cardiac Care 2007

Impella Better unloading + more support

*Adapted from Seyfarth, et al., J Am Coll Cardiol. 2008 Nov 4;52(19):1584-8

The AMC MACH/Impella program

1: Elective high-risk PCI procedures^{1,2}

1a: Safety and feasibility of elective high-risk PCI with Impella 2.5 support*

1b: Intracoronary flow measurements high-risk PCI Procedures Impella 2.5 support §

1c: Europella short term FUP

1d: Europella long term FUP

1e: Protect 1

1f: Protect 2

2: Acute myocardial infarction

2a: Safety and Feasibility in STEMI patients³

2b: STEMI patients in cardiogenic pre-shock

2c: STEMI patients in severe cardiogenic shock

2d: P/V loop measurements and/or intracoronary flow measurements⁴

Phase 3: End-stage heart failure

Phase 4: Left ventricular assistance after cardiac surgery Phase 5: All other patients

Henriques JP, Remmelink M; Am J Cardiol. 2006
 Remmelink M, Sjauw KD, Henriques JP, Baan jr. J; CCI 2007
 Sjauw KD, Remmelink M, Baan jr. J, Henriques JP; JACC 2008

Cardiogenic shock

Impella - AMC

Presentation ouweneel Status juni 2014

PV-loops

Unloading even prior to reperfusion

Kapur NK et al. Circulation 2013

Unloading after MI without reperfusion

Wei X al. JACC Cardiovasc Interv 2013

Myocardial recovery – IMPELLA 2,5 Unloading in STEMI

Non randomized pilot study

Impella 2,5/5,0

Are all devices equal? – Upgrade?

am

Impella 2,5

Impella 2,5 Euroshock registry

an

Lauten A, Engstrom AE, et al. Circulation Heart Failure, 2013

Implemented AMC strategy

Impella CP 14 Fr providing >3,7 L/min

AMC, Amsterdam, NL Haukeland, Bergen, N Danish National Shock routine care vs CP

Impella CP

32 patients in 24 months 360 patients planned

Percutaneous circulatory support

	IABP	ECMO	TandemHeart	Impella 2.5	Impella CP	Impella 5.0	Impella RP
Pump mechanism	Pneumatic	Centrifugal	Centrifugal	Axial flow	Axial flow	Axial flow	Axial flow
Cannula size	7-9 F	18-21 F	21 F inflow	13 F	14 F	22 F	23 F
		inflow; 15-22	15-17 F outflow			Surgical	
		F outflow	13-17 F Outilow			cut-down	
Insertion technique	descending	Inflow in RA	inflow in LA via	Across aortic	Across aortic	Across	Via femoral
	aorta via the	via femoral	femoral vein and	valve via	valve via	aortic valve	vein accross
	femoral	vein, outflow	trans-septal	femoral	femoral artery	via surgical	tricuspid and
	artery	in desc aorta	puncture outflow	artery		cut-down of	pulmonary
		via femoral	15-17 F femoral			femoral	valve
		artery	artery			artery	
Haemodynamic	0.5 -1.0 L/min	> 4.5 L/min	4 L/min	2.5 L/min	3.7 – 4.0 L/min	5.0 L/min	4.0 L/min
support							
Implantation time	+	++	++++	++	++	++++	++
Risk of limb ischaemia	+	+++	+++	++	++	++	+
Anticoagulation	+	+++	+++	+	+	+	+
Haemolysis	+	++	++	++	++	++	++
Requires stable rhythm	Yes	No	No	No	No	No	No
management + +++ ++++		++++	++	++	++	++	
complexity	Adapted from Ouweneel and Henriques. Heart 2012						

ACC/AHA guidelines over the years

Year	Device	Recon	nmendation
2011	IABP	I/B	A hemodynamic support device is recommended for patients with cardiogenic shock after STEMI who do not quickly stabilize with pharmacological therapy
	Left ventricular assist devices	I/B	A hemodynamic support device is recommended for patients with cardiogenic shock after STEMI who do not quickly stabilize with pharmacological therapy
2013	IABP	IIa/B	The use of intra-aortic balloon pump (IABP) counterpulsation can be useful for patients with cardiogenic shock after STEMI who do not quickly stabilize with pharmacological therapy
	Left ventricular assist devices	llb/C	Alternative LV assist devices for circulatory support may be considered in patients with refractory cardiogenic shock

ESC guidelines over the years

Year	Device	Reco	mmendation	
2010	IABP	I/C	IABP insertion is recommended in patients with haemodynamic instability (particularly those in cardiogenic shock and with mechanical complications	
	Left ventricular assist devices	III/B	Routine use of percutaneous centrifugal pumps is not recommended	
2012	IABP	IIb/B	Intra-aortic balloon pumping may be considered (in patients with cardiogenic shock (Killip class IV)	
	Left ventricular assist devices	IIb/C	LV assist devices may be considered for circulatory support in patients in refractory shock	
2014	IABP	III/A	Routine use of IABP in patients with cardiogenic shock is not recommended	
	Left ventricular assist devices	IIb/C	Short-term mechanical circulatory support in ACS patients with cardiogenic shock may be considered	

SHOCK CASE

- 51 yr old male
- Wakes up with chestpain and shortness of breath
- Calls 112 (prehospitale triage system EMS)
- EMS calls+sends EKG: abnormal but poor clinical condition
- Immediate transfer to our hospital and cath-lab notified
- Initiate treatment: Aspirin, Clopidogrel, Heparin and Oxygen

- Severely distressed/restless on arrival @ hospital
- Pale with cold and discolored extremities
- BP 60/40
- HR 104/min
- Saturation 81 with O2
- Breathing >30/min

Just one shot....what next?

Initiate Organ and Myocardial Recovery

- Immediate Impella 2,5 placement left groin
- Immediate patient relief less short of breath
- BP 80/70 (initial BP 60/40)
- Heart rate 105/min

PCI final result – TIMI 2-3

Clinical course - Immediately after PCI

- BP 95/85 (pulsepressure),
- heartrate 100/min
- Saturation 90% with O2
- Some ECG resolution
- No inotropes
- No vasopressors
- Not to ICU but to CCU
- Echo: LVEF 15-20% (only inferior wall contractions)

Clinical course until discharge

- CK MB 700 U/L
- Initial rise in creatinine levels and low urine production but restoration after 2-3 days
- Total Impella 2,5 support for 8 days
- Weaned well and was discharged to local hospital and home a week later – total admission time: 19 days

Post discharge FUP

- LVEF 46% @ 4 months, no residual ischemia
- Reangio after 9 months for LM PCI : good result
- Has resumed all his former activities without apparent limitations

A recovered heart and patient

SEVERE SHOCK CASE

- 46 yr old male
- No previous medical history
- Out-of-hospital-arrest and immediate BLS by friends
- Arrival of Ambulance and multiple times defibrillated
- After 20 minutes some degree of pulsatility
- ECG: large anterior STEMI

Arrival @ cathlab

- Intubated and blood through endotracheal tube
- Cold extremities
- BP 75/60
- HR 110/min
- On inotropes:
 - adrenaline high dose
 - dobutamine medium dose
 - Norepinephrine medium dose

RCA

Femoral artery

Circulatory support first

IMPELLA CP >3,7 L/min

- Wire
- Thrombusaspiration
- Complete collapse of circulation
- No pulsatility on arterial line during 10 min.
 ~60 mm Hg
- Stentys stent

PCI result

- ليعالد المراهدا فبالمراجد اعداده ليداعد المراب
- Leaving the cath-lab
- BP 90/70
- HR 100/min
- Impella CP on 3.7 L/min
- Still on norepinephrine
- No longer adrenaline

Clinical course

- ICU stay 22 days
- Polyneuropathy
- 13 days on Impella CP support of which 10 days full support
- 3 days CCU/medium care
- Predischarge LVEF on echo and MIBI 33%
- ICD decision (?)
- Total hospital stay 43 days
- Has resumed all his former activities @ 3 months after discharge

Conclusions

Cardiogenic shock is still a condition with 50% mortality

IABP should not be used for cardiogenic shock

More potent percutaneous devices enter the cath-lab

What device for what condition?

ECMO best cards for ongoing resuscitation

Impella has best cards for cardiogenic shock

My guess for the future : Circulatory support before PCI !

Impella[®] RP

- Temporary circulatory support for RV failure
- Single vascular access (femoral vein)
- Placed under fluoroscopic guidance
- No sternotomy required
- No extracorporeal circulation
- 22 Fr pump on an 11 Fr catheter
- Maximum flows > 4 L/min

Ostadal P et al. Circ Arrhythm Electrophysiol. 2012

Impella 2,5

US-Pella SHOCK registry

Impella Support Initiation

aw

am My personal recommendation for Impella usage

Geographic distribution of Impella per indication

Impella CP^{TM}

- Increased Cardiac Power
 Up to 3,7 L/Min Peak Flow
- Speed of the Cath Lab
 - Percutaneous implant of a 9
 Fr catheter / 14 Fr pump
- Compatible with 14 Fr sheath
 - Abiomed peel-away (Oscor)
 - Cook 30cm, 14Fr

