Het Falende Hart in Beweging

Victor Niemeijer Sportarts, Elkerliek Ziekenhuis Helmond

CNE Hartfalen en Hartrevalidatie Nederlandse Vereniging voor Hart en Vaat Verpleegkundigen

Dinsdag 21 april 2015

Inhoud

* Pathofysiologie

* Fysieke Training

* Inspanningsdiagnostiek

Vraag	Score	Antwoord	Verschil (abs)
1			
2			
3			
4			
5			
6a			
6b			
som			

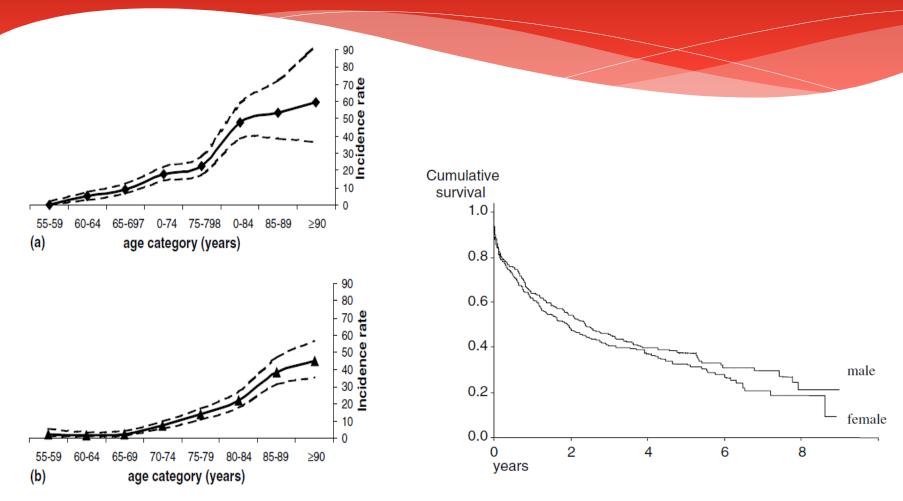
* Hoeveel procent van de patiënten met chronisch hartfalen is in Nederland vijf jaar na diagnose overleden?

* Hoeveel procent van de patiënten met chronisch hartfalen die een indicatie hebben voor hartrevalidatie krijgt dit in Nederland daadwerkelijk aangeboden?

* Hoeveel procent van de patiënten met chronisch hartfalen verbeteren hun peak VO₂ (>109%) door fysieke training?

* Hoeveel procent van de patiënten met chronisch hartfalen valt gemiddeld uit tijdens een fysiek trainingsprogramma van 12 weken?

* Hoeveel hartslagen (/min) moet men bij inspanning verwijderd blijven van de VT-zone van de ICD van een CHF patiënt?

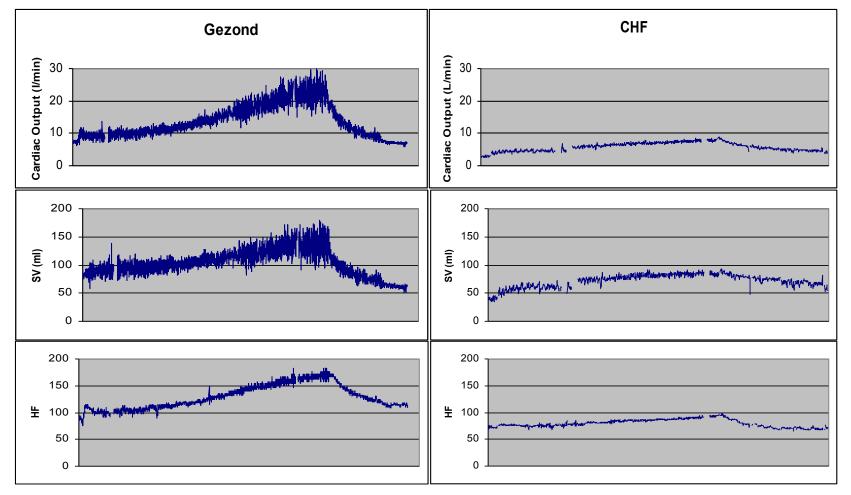


* Vanaf welke waarde voor peak VO₂

- wordt een CHF patient geschikt geacht voor hartrevalidatie? (goed genoeg)
- wordt een CHF patient geschikt geacht voor harttransplantatie? (slecht genoeg)

Het Falende Hart in Beweging Epidemiologie

Epidemiologie

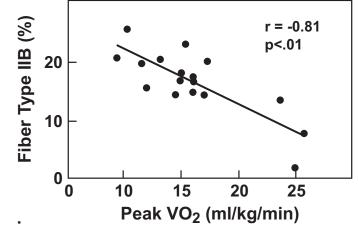

Het Falende Hart in Beweging

Pathofysiologie

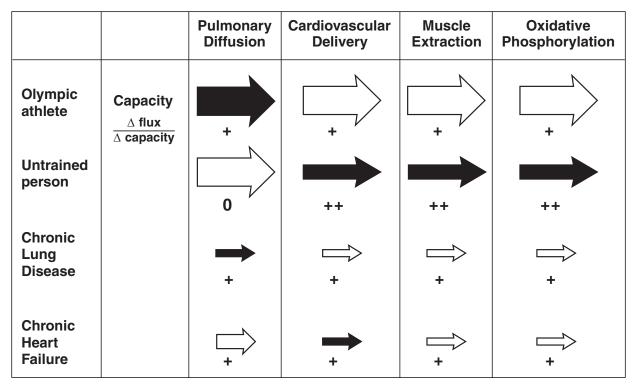
 "A pathophysiological state in which an abnormality of cardiac function is responsible for the failure of the heart to pump blood at a rate commensurate with the requirements of the metabolising tissues" (Braunwald, 1980)

* Etiologie

- * Ischemische cardiomyopathie
- * Dilaterende cardiomyopathie
- Hypertensieve cardiomyopathie
- * Valvulaire cardiomyopathie


* Centraal

- * Afgenomen cardiac output (CO = SV X HR)
- * Afgenomen LVEF (dilatatie)
- * Coronair perfusie
- * Sympathetic nerve activity (SNA)
- * Systemische inflammatie


* Perifeer

* Perifere vasoconstrictie (neurohormonaal)

- * Skeletspieratrofie
 - * Shift vezeltype $(I \longrightarrow II_{a/b})$
- * Calciummetabolisme
- * Capillairen
 - * verminderde RBC flux
- * Competitieve bloedstromen
 - * Ademhalingspieren vs locomotor spieren

Coordinated adaptation

Het Falende Hart in Beweging Fysieke training

Centrale effecten reverse remodelling

		Exercise Training Group (n = 31)			Control Group (n = 33)	
	Baseline	6-Month Follow-up	<i>P</i> Value†	Baseline	6-Month Follow-up	<i>P</i> Value‡
LV-EDD, mm	69 (10)	66 (10)	.78	65 (9)	66 (9)	<.001
LV-ESD, mm	60 (10)	55 (10)	.54	55 (9)	56 (9)	<.001
LV-EDV, mL	229 (75)	207 (85)	.55	207 (66)	218 (68)	.008
LV-ESV, mL	161 (65)	137 (66)	.46	147 (56)	148 (56)	.009
LVEF	0.30 (0.08)	0.35 (0.09)	.43	0.30 (0.09)	0.33 (0.09)	.47

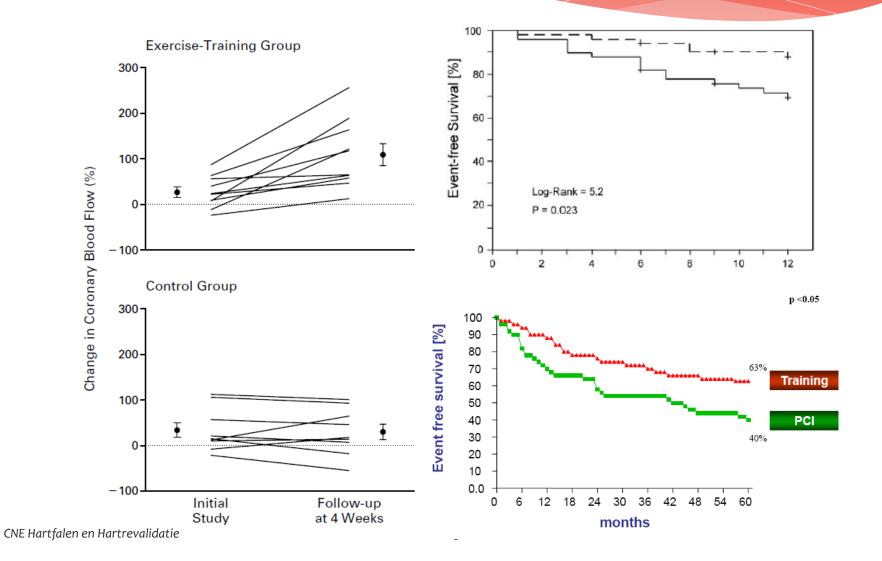
		Exercise Training Group (n=45)		ol Group =44)
	Baseline 6 Months		Baseline	6 Months
EDV, mL/m ²	142±26	135±26*	147±41	156±42*†
ESV, mL/m ²	107±24	97±24*	110±34	118±34*‡
EF, %	25±4	29+4*	25±4	25±5‡

Centrale effecten reverse remodelling

TABLE 3. LV Volumes and Resting Hemodynamics

	Control		МСТ		AIT	
	Baseline	Follow-Up	Baseline	Follow-Up	Baseline	Follow-Up
LVDD, mm	67.2±8.1	67.8±12.5	69.1±8.6	68.2±6.5	66.7±6.8	59.0±6.8*†
LVSD, mm	56.2±9.2	56.7±13.7	56.6±8.8	53.9±7.4	53.9±6.7	46.1± 8 .2*†
LVEDV, mL	250.5±64.4	242.1±62.3	245.5±53.1	230.3±41.0	248.1±79.6	202.9±72.0*†
LVESV, mL	187.8±53.0	186.6±58.6	172.9±48.7	160.6±34.3	177.4±72.1	133.9±57.8*†
HR at rest, bpm	60±11	59±11	55±10	54±12	65±14	61±13
SV, mL	53.4±15.3	55.0±13.7	63.5±12.7	63.1±15.7	57.1±14.3	67.0±19.9*
CO, L/min	3.1±0.6	3.2 ± 0.5	$3.5 {\pm} 0.9$	3.4±1.1	$3.5 {\pm} 0.5$	3.9±0.6*
EF, %	26.2±8.0	26.6±9.7	32.8±4.8	33.5±5.7	28.0±7.3	38.0±9.8*†

Centrale effecten coronaire perfusie

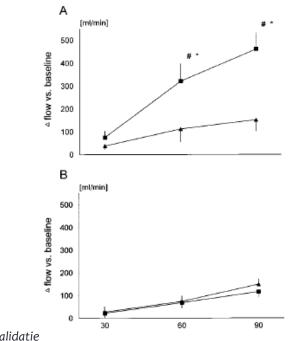

EFFECT OF EXERCISE ON CORONARY ENDOTHELIAL FUNCTION IN PATIENTS WITH CORONARY ARTERY DISEASE

RAINER HAMBRECHT, M.D., ANAMARIA WOLF, M.D., STEPHAN GIELEN, M.D., AXEL LINKE, M.D., JÜRGEN HOFER, B.S., SANDRA ERBS, M.D., NINA SCHOENE, M.D., AND GERHARD SCHULER, M.D.

Percutaneous Coronary Angioplasty Compared With Exercise Training in Patients With Stable Coronary Artery Disease

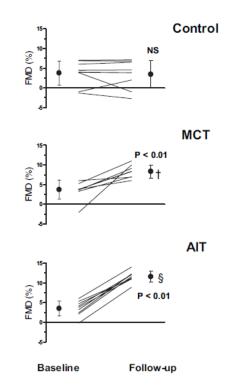
A Randomized Trial

Rainer Hambrecht, MD; Claudia Walther, MD; Sven Möbius-Winkler, MD; Stephan Gielen, MD; Axel Linke, MD; Katrin Conradi, MD; Sandra Erbs, MD; Regine Kluge, MD; Kai Kendziorra, MD; Osama Sabri, MD; Peter Sick, MD; Gerhard Schuler, MD

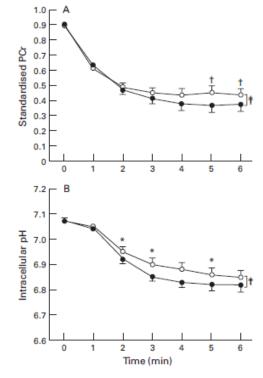


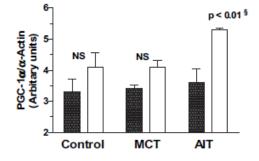
Perifere effecten skeletspierdoorbloeding

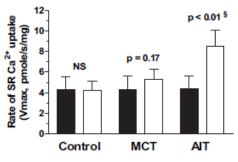
24


Regular Physical Exercise Corrects Endothelial Dysfunction and Improves Exercise Capacity in Patients With Chronic Heart Failure

Rainer Hambrecht, MD; Eduard Fiehn, MD; Claudia Weigl, MD; Stephan Gielen, MD; Caroline Hamann, BS; Ralf Kaiser, BS; Jiangtao Yu, MD; Volker Adams, PhD; Josef Niebauer, MD; Gerhard Schuler, MD

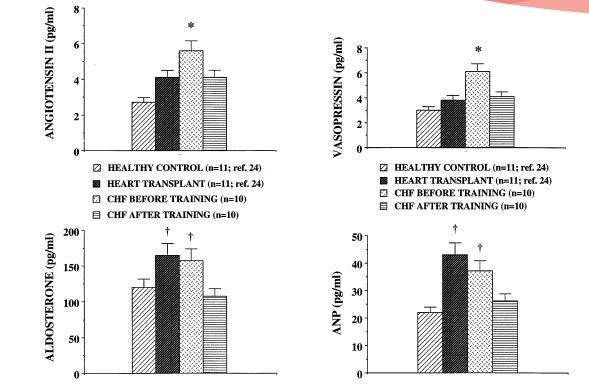

acetylcholine [µg/min]


Endothelial function

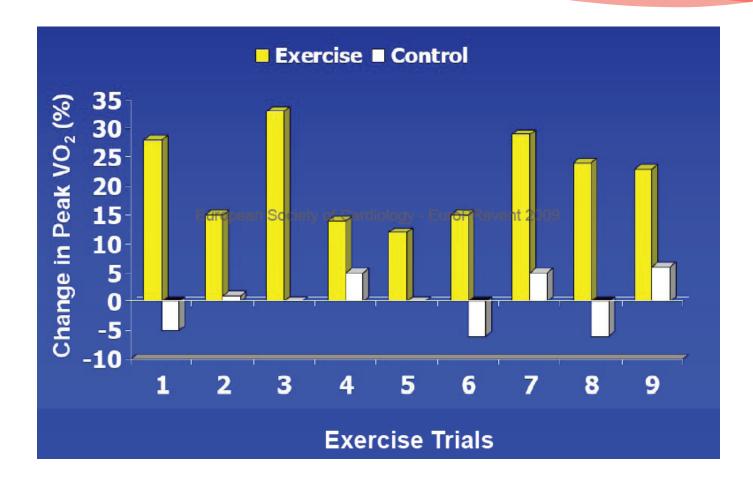


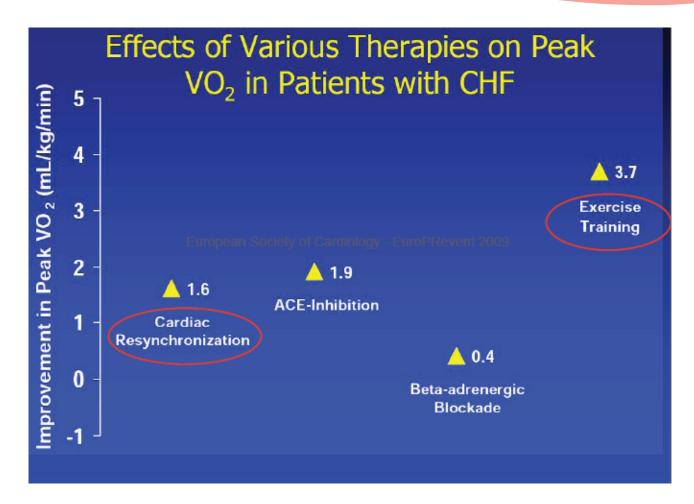
Perifere effecten

skeletspiermetabolisme



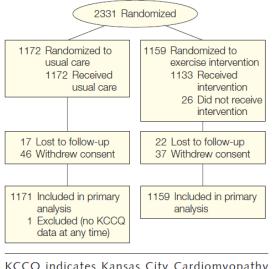
Variable	Baseline	6 Months	Change (%)
Training	•	•	
Fiber type I (%)	$(48) \pm 7$	$(52 \pm 7^*)$	4 ± 4 (8%)†
Fiber type II (%)	52 ± 7	$48 \pm 6^*$	4 ± 5 (-8%)†
Control			
Fiber type I (%)	$(49) \pm 5$	(46) 7*	$-3 \pm 5 (-6\%)$
Fiber type II (%)	51 ± 5	54 ± 10	$3 \pm 6 (6\%)$


Perifere effecten neurohormonaal



Fysieke training

* Inspanningscapaciteit


- * Kwaliteit van leven
- * Prognose

Fysieke training kwaliteit van leven

HF-ACTION (Flynn 2009 JAMA)

KCCQ indicates Kansas City Cardiomyopathy Questionnaire.

CHANGE (Wielenga 2008 Heart Fail Rev)

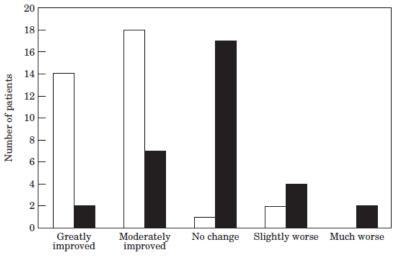


Figure 1 Overall assessment of general well-being. □=training; ■=control.

Conclusions Exercise training conferred modest but statistically significant improvements in self-reported health status compared with usual care without training. Improvements occurred early and persisted over time.

Fysieke training prognose

bmj**.**com

Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH)

Training 3-7x / week 8 weken – 1 jaar 60-80% peak VO2 / HF

Interventie: 88 overleden (mediane tijd tot

event: 618 dagen)

Controle: 105 overleden (mediane tijd tot

event: 421 dagen)

NNT: 17 (2 jaar)

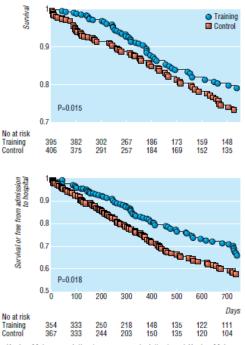


Fig 3 Kaplan-Meier cumulative two year survival (top) and Kaplan-Meier cumulative two year survival or free from admission to hospital (bottom)

2

Years from Randomization

Tı	aining 5x / week, na 3 maanden	home Adverse Event	Usual Care (N = 1171) ^a	Exercise Training (N = 1159)			
based		Prespecified Cardiovaso	Prespecified Cardiovascular Adverse Events				
_		Worsening heart failure, No. (%)	340 (29.0)	303 (26.1)			
6	0% heart rate reserve, 3x30 min	Myocardial infarction, No. (%)	45 (3.8)	41 (3.5)			
		Unstable angina, No. (%)	88 (7.5)	86 (7.4)			
		Serious adverse arrhythmia, No. (%) b	164 (14.0)	167 (14.4)			
^{0.8} T		Stroke, No. (%)	28 (2.4)	33 (2.8)			
0.7 -	(Primary) HR 0.93 (95% CI: 0.84, 1.02), <i>P</i> = 0.13	Transient ischemic attack, No. (%)	23 (2.0)	20 (1.7)			
	*Adjusted HR 0.89 (95% CI: 0.81, 0.99), P = 0.03	Any of the above events, No. (%)	471 (40.0)	434 (\$7.4)			
0.6 -		General Adve	erse Events	\smile			
0.5 -		Hospitalization for fracture of the hip or pelvis, N	lo. (%) 7 (0.6)	3 (0.3)			
It Hate		Outpatient fracture repair, No. (%)	20 (1.7)	13 (1.1)			
L 0.4		ICD firing, No. fired/No. with ICD (%)	151/644 (23.0)	142/641 (22.2)			
0.3 -		Hospitalization after exercise, No. $(\%)^{C}$	(22 ().9)	37 (8.2)			
0.2 -	- Usual Care	Death after (or unknown if after) exercise, No. (%	₆₎ d 5 (0.4)	5 (0.4)			
0.1 -	— Exercise						

CNE Hartfalen en Hartrevalidatie

1

0.5 Event Bate 8.0 8.0

0

0

3

Trainingsvormen

* Aerobe en interval training

* Krachttraining

* Inspiratory muscle training

* HF-ACTION (2009)

* Moderate Intensity Continuous Training (MIT of CT)

* Meyer (1996)

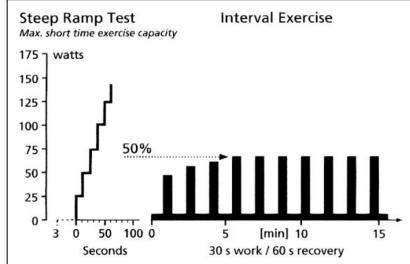
* Supra Hoog-intensieve Interval Training (HIIT)

* Wisløff (2007)
* Aerobe Interval Training (AIT)

CT (HF-ACTION)

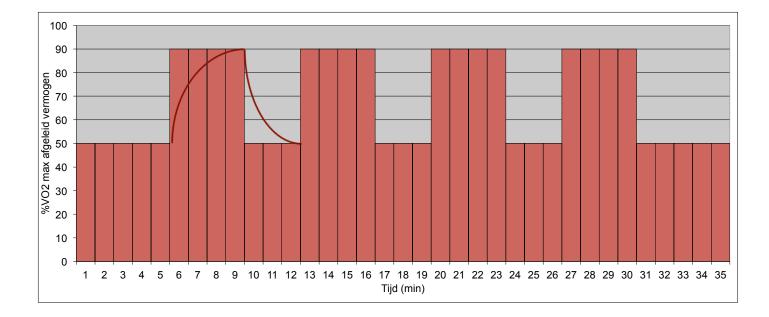
Efficacy and Safety of Exercise Training in Patients With Chronic Heart Failure: HF-ACTION Randomized Controlled Trial

Christopher M. O'Connor, MD, David J. Whellan, MD, MHS, Kerry L. Lee, PhD, Steven J.


	Med		
Test	Usual Care	Exercise Training	P Value
Baseline to 3 months ^a			
Six-minute walk distance, $m (n = 1835)$	5 (-28, 37)	20 -15, 57)	< .001
Cardiopulmonary exercise duration, min (n = 1914)	0.3 (-0.6, 1.4)	1.5 (0.3, 3.0)	< .001
Peak VO ₂ , mL/kg//min (n = 1870)	0.2 (-1.2, 1.4)	0.6 (-0.7, 2.3)	< .001
Baseline to 12 months ^{<i>a</i>}			
Six-minute walk distance, m (n = 1444)	12 (-30, 55)	13 (-28, 61)	.26
Cardiopulmonary exercise duration, $\min(n = 1476)$	0.2 (-1.0, 1.7)	1.5 (0.0, 3.2)	< .001
Peak VO ₂ , mL/kg//min (n = 1442)	0.1 (-1.5, 1.8)	0.7 (-1.0, 2.5)	< .001

Change in 6-Minute Walk Test and Cardiopulmonary Exercise Test Results^a

HIIT (Meyer)


Interval training in patients with severe chronic heart failure: analysis and recommendations for exercise procedures. MEYER, KATHARINA; SAMEK, LADISLAUS; SCHWAIBOLD, MATTHIAS; WESTBROOK, SAMUEL; HAJRIC, RAMIZ; BENEKE, RALPH; LEHMANN, MANFRED; ROSKAMM, HELMUT

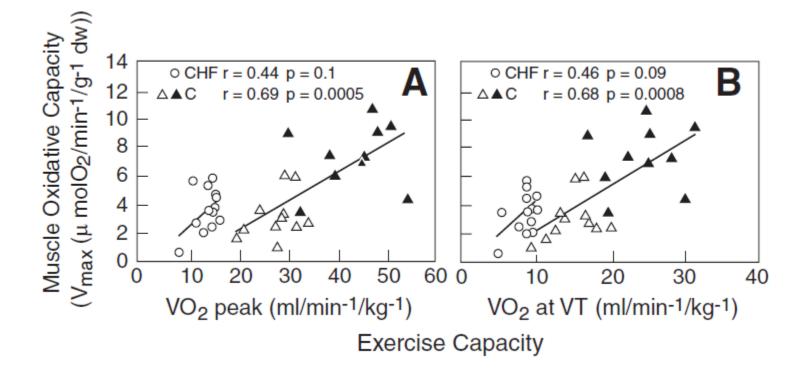
Medicine & Science in Sports & Exercise. 29(3):306-312, March 1997.

AIT (Wisløff)

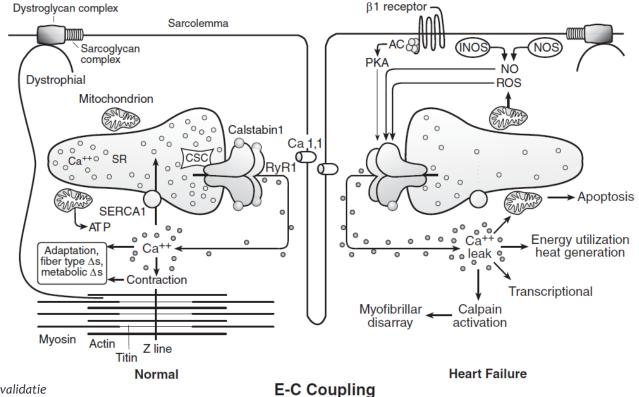
AIT (Wisløff)

TABLE 2. Aerobic Capacity and Exercise Data

	Cor	ntrol	N	ICT	AIT	
	Baseline	Follow-Up	Baseline	Follow-Up	Baseline	Follow-Up
Peak treadmill test						
$\dot{V}o_{2peak}$, mL \cdot kg ⁻¹ \cdot min ⁻¹	13.2±1.9	13.4±2.0	13.0±1.1	14.9±0.9*	13.0±1.6	19.0±2.1*†
Peak heart rate, bpm	129±23	127±21	132±18	130±21	129±19	127±22
[La ⁻] _b at Vo _{2peak} , mmol/L	6.3±1.6	6.3±1.2	6.8±1.2	6.4±1.0	6.2±0.8	6.0±0.6
RER at Vo _{2peak}	1.10±0.04	1.11 ± 0.04	1.10±0.04	1.09 ± 0.05	1.08 ± 0.05	1.11 ± 0.04
Anaerobic threshold						
% Of peak oxygen uptake	64±6	65±4	61±3	68±4*‡	63±5	61±3
$mL \cdot kg^{-1} \cdot min^{-1}$	8.5±1.6	8.7±3.9	8.0±0.7	10.1±0.9*§	8.2±0.8	11.6±1.0*†

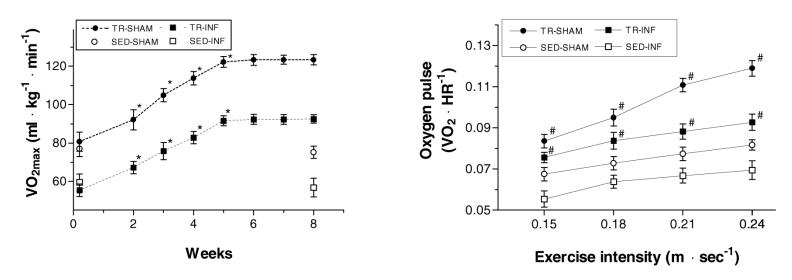

Hoe werkt AIT?

FOKKE & SUKKE

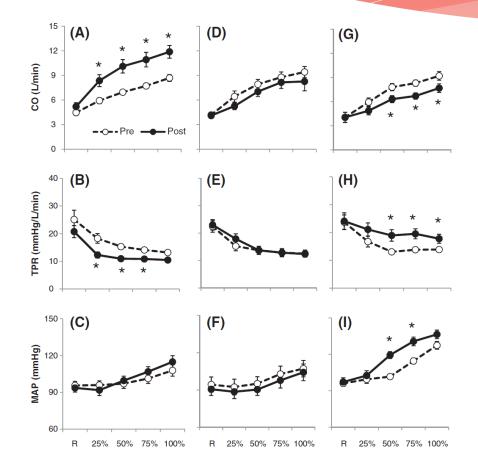

WETEN WAAR HET IN DE WETENSCHAP OM DRAAIT

ZEER INDRUKWEKKEND, COLLEGA MAAR WERKT HET OOK IN THEORIE?

Hoe werkt AIT? Oxidatieve capaciteit


Hoe werkt AIT? Exitatie – Contractie Koppeling

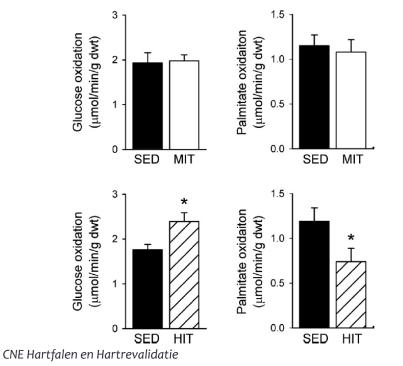
Hoe werkt AIT? Hartspierfunctie

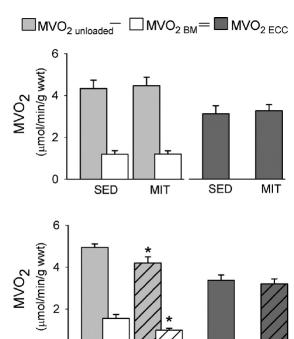

Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca²⁺ sensitivity and SERCA-2 in rat after myocardial infarction

Ulrik Wisloff^a, Jan P. Loennechen^a, Susan Currie^b, Godfrey L. Smith^b, Øyvind Ellingsen^{a,*}

CNE Hartfalen en Hartrevalidatie

Hoe werkt AIT? Hartspierfunctie




CNE Hartfalen en Hartrevalidatie

Hoe werkt AIT? Hartspiermetabolisme

High intensity interval training alters substrate utilization and reduces oxygen consumption in the heart

A. D. Hafstad,¹ N. T. Boardman,¹ J. Lund,¹ M. Hagve,¹ A. M. Khalid,¹ U. Wisløff,^{2,3} T. S. Larsen,^{1,2} and E. Aasum¹

HIT

SED

HIT

0

SED

Vergelijking HIT

-	Study	Intermittent exercise workload	Comparator	Weeks	Frequency	Mode	kcal week ⁻¹	%Δ
							Int./Comparator	Peak VO ₂
-	Anagnostakou [8]	30 s work:60 s rest 50% peak work (40 min)	Intermittent and strength training	12	Thrice week ⁻¹	Cycle	135	9.6 vs 16.6
	Bouchla [9]	30 s work:60 s rest 50% peak work (40 min)	Intermittent and strength training	12	Thrice week ⁻¹	Cycle	138	8.2 vs 16.7
\longrightarrow	Delagradelle [7]	2 min 50% peak VO ₂ :2 min 75% peak VO ₂ (40 min)	Intermittent and strength training	16	Thrice week ⁻¹	Cycle	595	6.6 vs 0.5
	Dimopoulos [10]	30 s work:30 s rest 100% peak work (40 min)	Continuous, 50% work rate, 40 mins	12	Thrice week ⁻¹	Cycle	393	7.8 vs 5.8
	Kemps [11]	30 s work:60 s rest x10 (15 min) 50% peak work	Sedentary control	12	Thrice week ⁻¹	Cycle	110	8.6 vs − 2.2
	Meyer [12]	30 s work:60 s at 15 W 50% peak work (25 min)	Sedentary control	3	Five times weekly	Cycle & Walking	217	19.6 vs 3.2
	Nechwatal [13]	30 s work:60 s at 15 W 50% peak work (15 min)	1. Sedentary control 2. Contin. 75% peak	3	Six times weekly	Cycling	198/198	8.1 vs 9.3 vs - 0.6
	Nilsson [14]	15-18 Borg Scale, 50 min	Sedentary control	16	Twice week ⁻¹	Aerobic	N/A	N/A
	Roditis [15]	30 s work:30 s rest 100% peak work (40 min)	Continuous, 50% work rate, 40 min	12	Thrice week ⁻¹	Cycle	330	8.5 vs 8.5
	Sabelis [16]	30 s work:60 s rest \times 10 50% peak work, for 15 mins	Sedentary control	26	Four weekly	Cycle	110	3.6 vs − 4.4
	Smart [17]	60 s work:60 s rest 70% peak VO ₂ (60 min)	Continuous, 70% work rate, 30 min	16	Thrice week ⁻¹	Cycle	467/467	20.5 vs 10.2
	Tasoulis [18]	30 s work:60 s rest (40 min)	1.Sedentary Control 2. Intermittent & strength training	12	Thrice week ⁻¹	Cycle	Interval 277 Comb. N/A	Int. 13.5 Control 3.7
	Willenheimer [19]	90 s work:30 s rest, 80% peak VO ₂ , start 15 min titrated to 45 min.	Sedentary control	16	2-3 weekly	Cycle	565	Comb.17.9 5.4 vs — 0.7
\longrightarrow	Wisloff [4]	4 min work, 90–95% peak HR,	1.Sedentary control	12	Thrice week ⁻¹	Walking	660/660	46 (int) vs 14.6 vs
ırtfalen en	Hartrevalidatie	3 min recovery 50–70% peak HR (38 min)	2. Contin. 75% peak HR, 47 min	45				1.5 (control)

HIT vs beweegadvies

	Inte	rmitte	nt	С	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Kemps 2010	1.5	1.8	30	-0.4	3.1	18	8.3%	1.90 [0.33, 3.47]	-
Meyer 1996	2.6	2.28	9	0.3	0.39	9	9.0%	2.30 [0.79, 3.81]	— -
Nechwatal 2002	1.5	3.2	20	-0.1	0.14	10	10.4%	1.60 [0.19, 3.01]	
Sabelis 2004	0.7	2.07	36	-0.8	1.94	25	19.8%	1.50 [0.48, 2.52]	
Tasoulis 2010	1.4	2.1	21	0.6	0.89	11	18.9%	0.80 [-0.24, 1.84]	+
Willenheimer 1998	0.9	2.03	22	-0.1	0.25	27	28.1%	1.00 [0.15, 1.85]	
Wisloff 2007	6	1.66	9	0.2	2.41	9	5.6%	5.80 [3.89, 7.71]	
Total (95% CI)			147			109	100.0%	1.58 [1.13, 2.04]	•
Heterogeneity: Chi ² = 23.70, df = 6 (P = 0.0006); l ² = 75%									
Test for overall effect: $Z = 6.86 (P < 0.00001)$						-4 -2 0 2 4 Favours Control Favours Intermittent			

Fig. 2. Change in peak VO₂ for intermittent versus sedentary control.

HIT vs MIT / CT

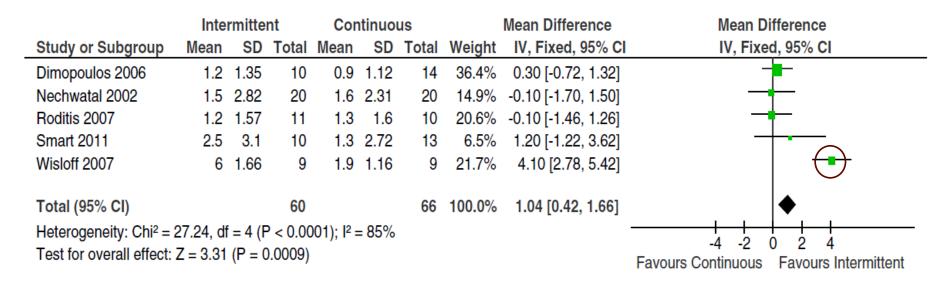


Fig. 3. Change in peak VO₂ for intermittent versus continuous exercise training.

Krachttraining

Randomized trial of progressive resistance training to counteract the myopathy of chronic heart failure

CHARLES T. PU,^{1,2,3} MEREDITH T. JOHNSON,^{1,3} DANIEL E. FORMAN,^{3,4} JEFFREY M. HAUSDORFF,⁵ RONENN ROUBENOFF,¹ MONA FOLDVARI,¹ ROGER A. FIELDING,^{1,6} AND MARIA A. FIATARONE SINGH^{1,3,7}

A systematic review on the effects of moderate-to-high intensity resistance training in patients with chronic heart failure

Martijn A Spruit, Rose-Miek Eterman, Valery Hellwig, Paul Janssen, Emiel Wouters and Nicole Uszko-Lencer

Effect of Resistance Exercise on Skeletal Muscle Myopathy in Heart Transplant Recipients

Randy W. Braith, PhD, Peter M. Magyari, PhD, Gary L. Pierce, MS, David G. Edwards, PhD, James A. Hill, MD, Lesley J. White, PhD, and Juan M. Aranda, Jr., MD

HIT vs HIT + krachttraining

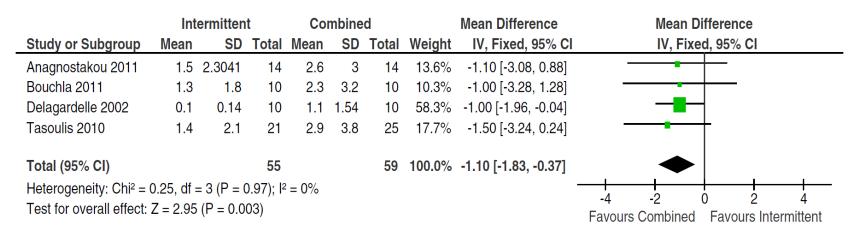
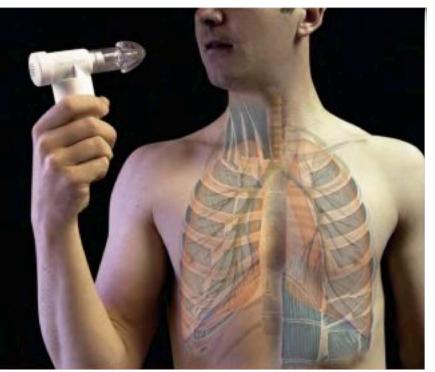



Fig. 4. Change in peak VO₂ for intermittent only versus combined training.

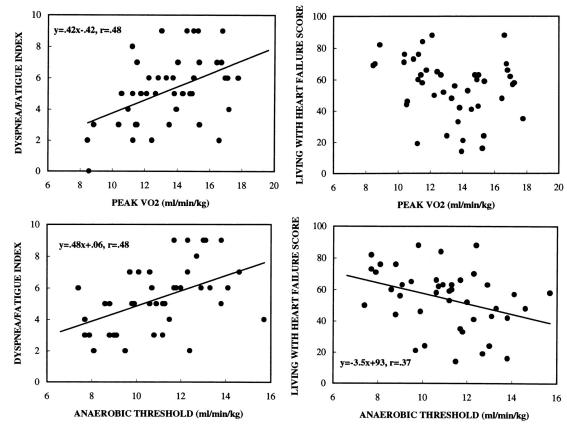
Ademhalingstraining

* Inspiratory muscle training

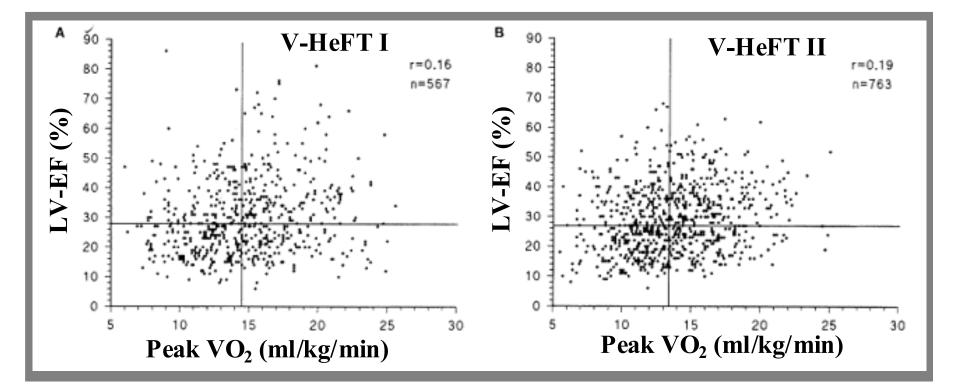
- * Pi max
 - * < 70% Pi max predicted
- * Training
 - * 30 min/dag
 - ***** 2-3x/week
 - * 20-40% Pi max

Het Falende Hart in Beweging

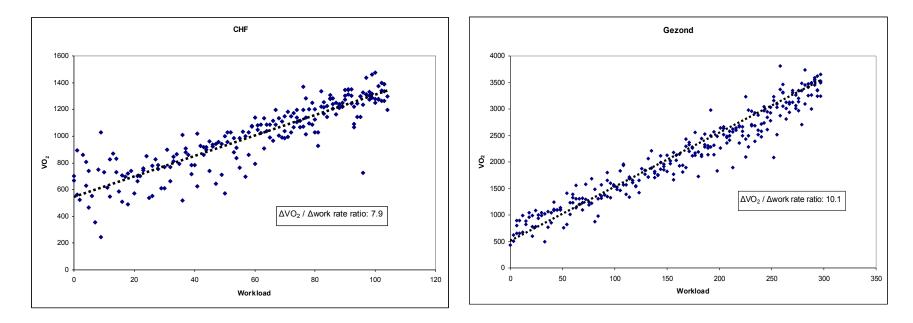
Inspanningsdiagnostiek



- 1. Objectiveren inspanningsvermogen / aansturen training
- 2. Vaststellen eventuele contra-indicaties voor training
- 3. Vaststellen aard beperking (co-morbiditeit)
- 4. Evalueren prognose


- Zwakke correlatie subjectieve beleving inspanningstolerantie en objectieve inspanningscapaciteit
- 2. Geen correlatie LVEF en objectieve inspanningscapaciteit
- Maximale aërobe capaciteit bij CHF niet goed te voorspellen door maximale vermogen

1. Zwakke correlatie subjectieve beleving inspanningstolerantie en objectieve inspanningscapaciteit (Wilson et al. Circulation 1995)



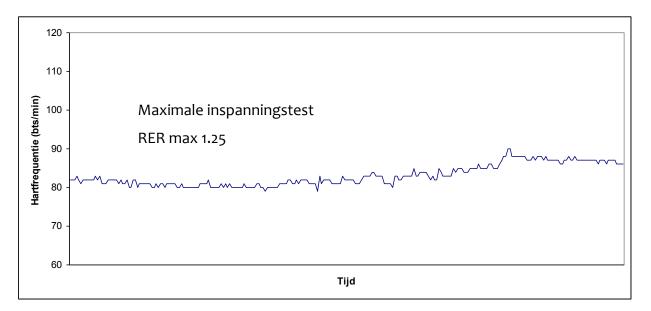
CNE Hartfalen en Hartrevalidatie

2. Geen correlatie LVEF en objectieve inspanningscapaciteit (Smith et al. Circulation 1993)

- - 3. Maximale aërobe capaciteit bij CHF niet goed te voorspellen door maximale vermogen

Objectiveren inspanningsvermogen

* Peak VO₂


- gemiddelde VO₂ in laatste
 20-30 sec van een RAMP test
- Bij goed uitgevoerde test objectieve reproduceerbare maat voor het maximale inspanningsvermogen

Aansturen training

- 1. Percentage peak VO₂
- 2. Percentage ventilatoire drempel

Hartfrequentie is vaak niet bruikbaar!

Position paper European Society Cardiology 2009:

Monitoring exercise intensity: HR can be used for exercise prescription, but its applicability is limited in patients with advanced HF (chronotropic incompetence), in those treated with β-blockers and when atrial fibrillation is coexisting

Meten van trainingseffecten - welke parameters? -

	Intervention grou	(N = 30)	Control group (N	P value	
	Baseline	Change	Baseline	Change	between-group difference
Symptom-limited exercise test					
Peak $\dot{V}O_2$ (ml kg ⁻¹ min ⁻¹)	17.5 ± 3.1	$1.5 \pm 1.8^{*}$	18.5 ± 4.4	-0.4 ± 3.1	0.01
Peak workload (W)	107 ± 30	$10 \pm 11^{*}$	106 ± 38	6 ± 13	0.25
Peak $\dot{V}_{\rm E}$ (1 min ⁻¹)	63 ± 19	$6 \pm 13^{*}$	64 ± 15	-2 ± 9	0.03
Peak HR (beats \min^{-1})	125 ± 22	1 ± 9	131 ± 23	-1 ± 13	0.66
Peak RER	1.12 ± 0.10	$0.04 \pm 0.10^{*}$	1.11 ± 0.10	$0.05 \pm 0.07^*$	0.82
VAT (ml kg ⁻¹ min ⁻¹)	12.2 ± 1.7	$1.3 \pm 1.4^{*}$	13.4 ± 2.9	-0.9 ± 2.1	< 0.001
OUES	1737 ± 442	$106 \pm 229^{*}$	1639 ± 654	-58 ± 313	0.04
$\dot{V}_{\rm E}/\dot{V}{\rm CO}_2$ slope	35.7 ± 6.5	$-1.8 \pm 4.2^{*}$	38.9 ± 7.4	-1.8 ± 5.2	0.98
Constant-load exercise test					
τ -rec (s)	78 ± 30	$-11 \pm 23^{*}$	72 ± 23	5 ± 10	0.01

Kemps et al. Eur J Appl Physiol 2010

Specifieke aanbevelingen

* ICD

- * 20 slagen onder interventie zone (cave AFib)
- * Schoudermobiliteit
- * CRT
 - Instellingen bij inspanning (positief complex V1)
- * LVAD
 - Pulsatile vs continuous flow
- * Hart transplantatie
 - Chronotrope incompetentie (denervatie)

Take home message

* Spier is ook ziek in CHF

- * Krachttraining werkt echter slechts beperkt
- * Individueel voorschrijven trainingsvorm
 - * Hoog intensief training is mogelijkheid
 - * HR alleen bruikbaar bij chronotrope competentie
 - * Cave ICD
- * Spiro-ergometrie is zinvol en sterk aanbevolen
 - * Richtlijn hartrevalidatie

Advies

- * Meyer 2013 Current heart failure reports:
 - "analogous to optimizing pharmacotherapy, combining and tailoring different exercise training modalities according to each patient's baseline exercise capacity, personal needs, preferences and goals seem the most judicious approach to exercise prescription"

Antwoorden

Vraag	Score	Antwoord	Verschil (abs)
1			
2			
3			
4			
5			
6a			
6b			
som			